Музыкальный портал
info@topzvuk.com

Звукорежиссура и измерения звука

Звукорежиссура и измерения звука
0

Звукорежиссура и измерения звука

Раздел: Интересное
Дата публикации: 20 апреля 2015, 01:06
Нравится
Нравится
Наверное, многим этот заголовок может показаться кощунственным. В самом деле, так много говорится о “магии музыки”, о “волшебстве звука”, и вдруг - какие-то там измерения! Да как можно, “это ж святотатство!” - скажете вы. Ан, нет!

Хотя, конечно, если говорить о музыке, как о нотах на листе бумаги - то безусловно, там еще никому и ничего измерить не удавалось. Да, пожалуй, и в голову не приходило - ну, только если количество нот сосчитать... Однако воспринимать партитуру уже как именно музыку - способны очень и очень немногие, а большинство нас способно воспринимать музыку исключительно в виде звуков, и это - не говоря уж о том, что и далеко не все музыканты ноты знают, вспомним хотя бы П. Маккартни!

В том то и дело, что речь идет именно о звуке. А он, как и всякое физическое, материальное явление - вполне может быть измерен. В самом деле, ведь звук - это колебания частиц воздуха, а они прекрасно поддаются объективным измерениям. Можно измерить амплитуду этих колебаний, их скорость, частоту, исследовать спектр... Аналогично - и в случае звука, преобразованного в электрическую форму, записанного или передаваемого по различного рода электронным трактам передачи сигналов. Только во втором случае мы можем исследовать не только параметры самого сигнала, но и параметры трактов его передачи.

Так как звук может быть представлен в двух различных ипостасях - в своем “исходном” виде, как волновые колебания в воздухе (или иной физической среде), или же как его электрический “слепок” - то, очевидно, что и измерения в этих двух случаях могут быть существенно различными.

Чтобы не запутаться, давайте начнем разговор об измерениях в звукотехнике “ab ovo”, или, попросту говоря, с измерений параметров исходного вида звука - как воздушных колебаний.

Акустические измерения
Итак - что же мы можем здесь измерить? Очевидно, самое простое, что прежде всего приходит в голову - это уровень звука, его громкость. Однако - это не совсем так просто, как кажется на первый взгляд. Дело здесь, во-первых, в том, что звуковое давление (как, впрочем, и давление вообще) измеряется в особых, “физических” единицах.

Таковыми являются, в частности, атмосфера, или более распространенная в последнее время в системе СИ единица “Паскаль” (Па). Один паскаль соответствует давлению силой в 1 Ньютон (около 100 грамм) на площадь в 1 кв. метр. Однако - думается, никто и никогда и слыхом не слыхивал о том, чтобы громкость где-либо измерялась в этих величинах...

Н-да, незадача! В чем же тут дело? А все очень просто - очевидно, что, раз в этих единицах не измеряется, то, значит, это попросту неудобно! И действительно, все привычные нам измерения осуществляются в децибелах. Каким же образом понятные, чисто физические величины, которые можно “пощупать руками” превращаются, как по волшебству, в какие-то там абстрактные децибелы?

Давайте вспомним вкратце, что такое децибел
Децибел - прежде всего, величина относительная, а не абсолютная, т.е. измеряющая отношение каких-либо величин. Соответственно - для того, чтобы выразить результат измерений в децибелах (дБ), надо сначала договориться о том, что будет использоваться в качестве опорной величины.

Для измерений уровней звука за опорный уровень принята величина звукового давления в 2х10-5 Па. Почему именно эта? Потому, что эта величина соответствует тому минимальному уровню звука (с частотой 1000 Гц), который еще воспринимается человеческим ухом (менее громкие звуки мы попросту не слышим). Именно эта величина и считается порогом слышимости.

Для того, чтобы узнать - каков будет уровень звука в дБ, надо измерить его “физическую” величину в Па, и затем вычислить искомое значение по формуле:
N=20lg(PN/P0), где PN - измеренный уровень звукового давления,
P0 =2х10-5 Па - опорный уровень,
N - искомая величина в децибелах.

Таким образом мы получим величину уровня звукового давления в децибелах. В литературе эта величина носит название SPL, по первым буквам английского словосочетания “Sound Pressure Level”, или, в отечественной литературе - УЗД.

Именно эта величина измеряется особыми приборами, специально предназначенными для измерений громкости звука - шумомерами. Однако эта величина далеко не всегда отражает реально воспринимаемую нами громкость звучания. Почему? Вот, теперь - мы подошли к “во-вторых”.
В самом деле, известно, что воспринимаемая ухом громкость зависит также и от частоты сигнала, а сама эта зависимость, будучи существенно нелинейной, в свою очередь зависит от уровня сигнала... И что делать?

К сожалению, если по “большому счету” - здесь тупик. Не существует во всем мире ни одного шумомера, способного на реальном, сложном, многочастотном звуке измерять субъективно воспринимаемую нами громкость. Однако, для некоторых частных случаев был предложен паллиативный выход.

В конструкцию шумомеров были введены особые, так называемые “псофометрические” фильтры, чья АЧХ примерно соответствует АЧХ слуха для некоторых, вполне определенных уровней звука. Если измеренный в широкой полосе уровень звукового давления примерно соответствует уровню одной из этих кривых, то, включив требуемый фильтр в цепь измеряющего прибора, мы внесем в измерения поправку на нелинейность АЧХ слуха, и результат измерений будет более точно соответствовать субъективно воспринимаемой нами громкости.

Таких псофометрических кривых АЧХ существует несколько, для разных уровней звукового давления и даже для разных исходных звучаний, однако в нашей области звукотехники реально применяется только одна разновидность, а именно - так называемая “кривая А”. Эта кривая примерно соответствует АЧХ слуха при громкости в 45 фон.

(Напомним, кстати, что громкость, как субъективная величина - измеряется не в децибелах, а в особых единицах, называемых “фон”. Уровень громкости в фонах соответствует уровню звукового давления эталонного звука с частотой в 1000 Гц, вызывающего у человека ощущение равной громкости по сравнению с исследуемым звучанием.)

Результат измерения, полученный с помощью псофометрического фильтра, часто называют “взвешенным”, при этом после обозначения децибела добавляется буква, соответствующая виду использованной кривой фильтра. В нашем случае это буква “А” - дБА.

izmerenie.jpg

Следует, однако, помнить, что применять именно этот фильтр - можно только для измерения слабых сигналов. В противном случае - можно такого намерять!.. А вот для слабых - в самый раз. Действительно, если предположить, что максимальный уровень звука соответствует 130дБ, т.е. болевому порогу, то сигнал с уровнем 45 дБ будет лежать ниже предыдущего на 85 дБ, что примерно соответствует соотношению сигнал/шум для современных электроакустических трактов звукопередачи.

Таким образом, применение дБА для измерения уровней шумов и помех в тракте - вполне оправданно и целесообразно. (Далее мы еще к этому вернемся.) То есть, если вы хотите измерить, скажем, уровень шумов вашего РА-комплекса в паузе - то смело применяйте дБА, результат “будет соответствовать”. Если же вас интересует громкость звучания самого концерта - то, учитывая особенности современной музыки, исполняемой на весьма высоких громкостях, можете смело выключать из цепи измерений все фильтры. Результаты, измеренные в широкой полосе, будут иметь весьма незначительную погрешность.

Еще один “звукомерный” измерительный прибор, получивший в практике звукоусиления, пожалуй, наиболее широкое распространение - это анализатор спектра. Именно он применяется для настройки АЧХ трактов звукоусиления, и чаще всего - совместно с генератором так называемого “розового шума”. (Справедливости ради заметим, что практически все современные шумомеры тоже имеют в своем составе треть-октавные фильтры, однако они могут включаться в работу только поочередно, и в силу этого неудобны для указанной цели.)

Как правило, применяемые в звукотехнике анализаторы спектра также используют треть-октавные фильтры, числом от 27 (в дешевых моделях) до 31 - в серьезных, профессиональных устройствах. Причем частоты настройки этих фильтров идентичны тем частотам, на которых осуществляется регулирование в графических эквалайзерах.

Наиболее удобные в работе анализаторы спектра имеют светодиодный дисплей-индикатор, состоящий из нескольких (по числу фильтров) столбиков светодиодов, по одному для каждой полосы частот сигнала. При этом в хороших моделях, типа классического DN60 от Klark-Teknik, число светодиодов в столбике достаточно велико - порядка 15 шт., что позволяет использовать эти анализаторы не только для настройки АЧХ, но и для многих других, более серьезных целей. Впрочем, существуют и совсем дешевенькие модели многих других фирм, всего с тремя светодиодами в каждом столбике. (Автор просит не рассматривать упоминание Klark-Teknik как рекламу!!! Ведь рекламировать Klark-Teknik - это все равно, что рекламировать, скажем, Роллс-Ройс. Не нуждаются они оба в ней! J )

Однако, мы отвлеклись...
При подключении к анализатору специального измерительного микрофона с максимально линейной АЧХ (и только такого - обычные, применяемые в музыке микрофоны - абсолютно для этого непригодны!), на экране будет достаточно точно отображаться спектр звука. Если на нем видны явно “торчащие”, как гвоздь в ботинке, пики (или провалы) в характеристике - то, перемещая соответствующие этим частотам регуляторы на эквалайзере, можно в определенных пределах скорректировать АЧХ тракта звукоусиления.

Однако - именно, и только “в определенных пределах”. Почему? Да потому, что нам же неизвестен спектр самого воспроизводимого сигнала, т.е. нет эталона для сравнения!.. 

Вот именно таким эталоном и служит входящий в состав большинства хороших анализаторов генератор так называемого “розового” шума. Почему именно “розового”, а не, скажем, белого или какого-нибудь там “серо-буро-малинового”? Да просто спектр именно такого шума - ближе к тем сигналам, музыкальным, с которыми мы имеем дело на практике. А сам термин "розовый" (впрочем, как и "белый") - пришел из оптики. Если белый цвет (свет) профильтровать через фильтр, имеющий АЧХ со спадом к коротковолновым, т.е. ВЧ-составляющим, с крутизной среза 3дб/октава - то он станет розовым.

Белый шум - это шум одинаковый по амплитуде на всех частотах звукового спектра. Т.е. если исследовать спектр такого шума узкополосным вольтметром с постоянной абсолютной шириной полосы пропускания (скажем, в 1Гц) - то его показания также будут одинаковыми, независимо от того, на какой частоте производятся измерения - на 10 Гц, или - на 100 МГц.

Розовый же шум - имеет равную энергию в постоянном интервале частот (относительном). Т.е. если исследовать спектр такого шума узкополосным вольтметром с постоянной относительной шириной полосы пропускания (скажем, в 1 октаву) - то его показания также будут одинаковыми, независимо от того, на какой средней частоте полосы производятся измерения - на 14 Гц (полоса измеряемых частот - от 10 до 20 Гц), или - на 140 МГц (полоса измеряемых частот - от 100 МГц до 200 Мгц).

Так как применяемые в анализаторах селективные фильтры также являются фильтрами с постоянной, в одну третью часть октавы, относительной шириной полосы пропускания, то при подаче на вход анализатора спектра сигнала розового шума - на экране дисплея будет видна ровная горизонтальная линия, что соответствует линейной АЧХ.

Таким образом, если вы подключите ко входу вашего РА-тракта сигнал с генератора розового шума, то на экране анализатора будет видна реальная результирующая АЧХ всего тракта, со всеми пиками и провалами. И вы сможете быстро, и без особых трудностей настроить свою аппаратуру.

Конечно, “быстро, и без особых трудностей” - это в случае хорошего анализатора, с нормальным экраном. Если же вы вынуждены обходиться упрощенным анализатором, всего с тремя светодиодами индикации в каждой полосе, то процедура настройки станет довольно утомительной. Ведь эти три светодиода, по сути, отражают только отклонение АЧХ от линейной, на уровне “больше-меньше”.

Поэтому настройка идет методом последовательных приближений, при постепенном переключении разрешающей способности шкалы на более точные значения - скажем, вначале 6 дБ на светодиод, потом - 3 дБ, потом - 1дБ. Довольно долго, не очень удобно, а главное - этот тип анализатора вы не сможете применить ни для чего другого, кроме как для настройки АЧХ. Подумайте, выбирая себе анализатор - стоит ли на нем экономить?

Кстати - уж коль речь зашла о DN60, то необходимо упомянуть о еще одной из множества его возможностей. Отдельно к анализатору вы можете приобрести еще и приставку RT60, служащую для анализа характера реверберационного процесса в помещении. С ее помощью вы можете измерить время реверберации в помещении, в том числе - для отдельных частот, и даже в графическом виде увидеть кривую затухания процесса реверберации, причем - по отдельности для каждой из полос спектра.

Это - очень интересная возможность, однако - вы же не можете переделать сам зал, как бы вам этого ни хотелось! Поэтому об этой функции, служащей в основном для целей архитектурной акустики, здесь упоминаем совсем вкратце, опять же - просто справедливости ради.

Говоря об акустических измерениях, необходимо упомянуть еще об одном приборе, так называемом “фазовом тестере”. (Этот прибор выпускается многими фирмами и под разными названиями, однако приведенное выше - наиболее распространенное на практике.) Он служит для проверки правильности фазирования акустических агрегатов. Наиболее часто этот тестер изготовляется в виде двух отдельных небольших блоков, один из которых служит генератором специального сигнала, а второй - собственно индикатором фазирования.

Генератор создает серию широкополосных импульсных сигналов особой формы, которая мало изменяется при прохождении частотно-разделительных цепей в кроссоверах, и его сигнал подается на вход усилителя или же микшерного пульта. (Естественно, что во втором случае - все имеющиеся в тракте эквалайзеры желательно отключить, переведя их в режим байпаса.)

Индикатор же, со встроенным в него микрофоном - поочередно подносится ко всем звукоизлучающим элементам вашей акустической системы. По загоранию расположенных на нем светодиодов, чаще всего имеющих маркировку “+Phase” и “-Phase”, можно достаточно уверенно судить о правильности фазировки ваших громкоговорителей.

Следует только помнить, что часто - особенно в сложных, многополосных АС - для получения качественного звука головки громкоговорителей, работающие в различных полосах, могут быть включены в противофазе относительно головок, работающих в других полосах, и поэтому имеет реальный смысл сравнивать между собой только фазировку тех динамиков, которые работают в идентичных полосах звукового сигнала.

Вот, в первом приближении, то основное, что можно сказать здесь о чисто акустических измерениях. Об измерении параметров самих громкоговорителей в этой статье речь не идет, это - тема для совсем другого рассказа...

Звукорежиссура и измерения звука

<div>Наверное, многим этот заголовок может показаться кощунственным. В самом деле, так много говорится о “магии музыки”, о “волшебстве звука”, и вдруг - какие-то там измерения! Да как можно, “это ж святотатство!” - скажете вы. Ан, нет!</div> <div> <br /> </div> <div>Хотя, конечно, если говорить о музыке, как о нотах на листе бумаги - то безусловно, там еще никому и ничего измерить не удавалось. Да, пожалуй, и в голову не приходило - ну, только если количество нот сосчитать... Однако воспринимать партитуру уже как именно музыку - способны очень и очень немногие, а большинство нас способно воспринимать музыку исключительно в виде звуков, и это - не говоря уж о том, что и далеко не все музыканты ноты знают, вспомним хотя бы П. Маккартни!</div> <div> <br /> </div> <div>В том то и дело, что речь идет именно о звуке. А он, как и всякое физическое, материальное явление - <b>вполне может быть измерен.</b> В самом деле, ведь звук - это колебания частиц воздуха, а они прекрасно поддаются объективным измерениям. Можно измерить амплитуду этих колебаний, их скорость, частоту, исследовать спектр... Аналогично - и в случае звука, преобразованного в электрическую форму, записанного или передаваемого по различного рода электронным трактам передачи сигналов. Только во втором случае мы можем исследовать не только параметры самого сигнала, но и параметры трактов его передачи.</div> <div> <br /> </div> <div>Так как звук может быть представлен в двух различных ипостасях - в своем “исходном” виде, как волновые колебания в воздухе (или иной физической среде), или же как его электрический “слепок” - то, очевидно, что и измерения в этих двух случаях могут быть существенно различными.</div> <div> <br /> </div> <div>Чтобы не запутаться, давайте начнем разговор об измерениях в звукотехнике “ab ovo”, или, попросту говоря, с измерений параметров исходного вида звука - как воздушных колебаний.</div> <div> <br /> </div> <div><b>Акустические измерения</b></div> <div>Итак - что же мы можем здесь измерить? Очевидно, самое простое, что прежде всего приходит в голову - это уровень звука, его громкость. Однако - это не совсем так просто, как кажется на первый взгляд. Дело здесь, во-первых, в том, что звуковое давление (как, впрочем, и давление вообще) измеряется в особых, “физических” единицах.</div> <div> <br /> </div> <div>Таковыми являются, в частности, атмосфера, или более распространенная в последнее время в системе СИ единица “Паскаль” (Па). Один паскаль соответствует давлению силой в 1 Ньютон (около 100 грамм) на площадь в 1 кв. метр. Однако - думается, никто и никогда и слыхом не слыхивал о том, чтобы громкость где-либо измерялась в этих величинах...</div> <div> <br /> </div> <div>Н-да, незадача! В чем же тут дело? А все очень просто - очевидно, что, раз в этих единицах не измеряется, то, значит, это попросту неудобно! И действительно, все привычные нам измерения осуществляются в децибелах. Каким же образом понятные, чисто физические величины, которые можно “пощупать руками” превращаются, как по волшебству, в какие-то там абстрактные децибелы?</div> <div> <br /> </div> <div><b>Давайте вспомним вкратце, что такое децибел</b></div> <div>Децибел - прежде всего, величина относительная, а не абсолютная, т.е. измеряющая отношение каких-либо величин. Соответственно - для того, чтобы выразить результат измерений в децибелах (дБ), надо сначала договориться о том, что будет использоваться в качестве опорной величины.</div> <div> <br /> </div> <div>Для измерений уровней звука за опорный уровень принята величина звукового давления в 2х10-5 Па. Почему именно эта? Потому, что эта величина соответствует тому минимальному уровню звука (с частотой 1000 Гц), который еще воспринимается человеческим ухом (менее громкие звуки мы попросту не слышим). Именно эта величина и считается порогом слышимости.</div> <div> <br /> </div> <div>Для того, чтобы узнать - каков будет уровень звука в дБ, надо измерить его “физическую” величину в Па, и затем вычислить искомое значение по формуле:</div> <div>N=20lg(PN/P0), где PN - измеренный уровень звукового давления,</div> <div>P0 =2х10-5 Па - опорный уровень,</div> <div>N - искомая величина в децибелах.</div> <div> <br /> </div> <div>Таким образом мы получим величину уровня звукового давления в децибелах. В литературе эта величина носит название SPL, по первым буквам английского словосочетания <b>“Sound Pressure Level”</b>, или, в отечественной литературе - УЗД.</div> <div> <br /> </div> <div>Именно эта величина измеряется особыми приборами, специально предназначенными для измерений громкости звука - шумомерами. Однако эта величина далеко не всегда отражает реально воспринимаемую нами громкость звучания. Почему? Вот, теперь - мы подошли к “во-вторых”.</div> <div>В самом деле, известно, что воспринимаемая ухом громкость зависит также и от частоты сигнала, а сама эта зависимость, будучи существенно нелинейной, в свою очередь зависит от уровня сигнала... И что делать?</div> <div> <br /> </div> <div>К сожалению, если по “большому счету” - здесь тупик. Не существует во всем мире ни одного шумомера, способного на реальном, сложном, многочастотном звуке измерять субъективно воспринимаемую нами громкость. Однако, для некоторых частных случаев <b>был предложен паллиативный выход.</b></div> <div> <br /> </div> <div>В конструкцию шумомеров были введены особые, так называемые “псофометрические” фильтры, чья АЧХ примерно соответствует АЧХ слуха для некоторых, вполне определенных уровней звука. Если измеренный в широкой полосе уровень звукового давления примерно соответствует уровню одной из этих кривых, то, включив требуемый фильтр в цепь измеряющего прибора, мы внесем в измерения поправку на нелинейность АЧХ слуха, и результат измерений будет более точно соответствовать субъективно воспринимаемой нами громкости.</div> <div> <br /> </div> <div>Таких псофометрических кривых АЧХ существует несколько, для разных уровней звукового давления и даже для разных исходных звучаний, однако в нашей области звукотехники реально применяется только одна разновидность, а именно - так называемая “кривая А”. Эта кривая примерно соответствует АЧХ слуха при громкости в 45 фон.</div> <div> <br /> </div> <div>(Напомним, кстати, что громкость, как субъективная величина - измеряется не в децибелах, а в особых единицах, называемых “фон”. Уровень громкости в фонах соответствует уровню звукового давления эталонного звука с частотой в 1000 Гц, вызывающего у человека ощущение равной громкости по сравнению с исследуемым звучанием.)</div> <div> <br /> </div> <div>Результат измерения, полученный с помощью псофометрического фильтра, часто называют “взвешенным”, при этом после обозначения децибела добавляется буква, соответствующая виду использованной кривой фильтра.<b> В нашем случае это буква “А” - дБА.</b></div> <div><b> <br /> </b></div> <div><img src="/upload/medialibrary/231/izmerenie.jpg" title="izmerenie.jpg" border="0" alt="izmerenie.jpg" width="512" height="512" /><b> <br /> </b></div> <div> <br /> </div> <div>Следует, однако, помнить, что применять именно этот фильтр - можно только для измерения слабых сигналов. В противном случае - можно такого намерять!.. А вот для слабых - в самый раз. Действительно, если предположить, что максимальный уровень звука соответствует 130дБ, т.е. болевому порогу, то сигнал с уровнем 45 дБ будет лежать ниже предыдущего на 85 дБ, что примерно соответствует соотношению сигнал/шум для современных электроакустических трактов звукопередачи.</div> <div> <br /> </div> <div>Таким образом, применение дБА для измерения уровней шумов и помех в тракте - вполне оправданно и целесообразно. (Далее мы еще к этому вернемся.) То есть, если вы хотите измерить, скажем, уровень шумов вашего РА-комплекса в паузе - то смело применяйте дБА, результат “будет соответствовать”. Если же вас интересует громкость звучания самого концерта - то, учитывая особенности современной музыки, исполняемой на весьма высоких громкостях, можете смело выключать из цепи измерений все фильтры. Результаты, измеренные в широкой полосе, <b>будут иметь весьма незначительную погрешность.</b></div> <div> <br /> </div> <div>Еще один “звукомерный” измерительный прибор, получивший в практике звукоусиления, пожалуй, наиболее широкое распространение - это анализатор спектра. Именно он применяется для настройки АЧХ трактов звукоусиления, и чаще всего - совместно с генератором так называемого “розового шума”. (Справедливости ради заметим, что практически все современные шумомеры тоже имеют в своем составе треть-октавные фильтры, однако они могут включаться в работу только поочередно, и в силу этого неудобны для указанной цели.)</div> <div> <br /> </div> <div>Как правило, применяемые в звукотехнике анализаторы спектра также используют треть-октавные фильтры, числом от 27 (в дешевых моделях) до 31 - в серьезных, профессиональных устройствах. Причем частоты настройки этих фильтров идентичны тем частотам, на которых осуществляется регулирование в графических эквалайзерах.</div> <div> <br /> </div> <div>Наиболее удобные в работе анализаторы спектра имеют светодиодный дисплей-индикатор, состоящий из нескольких (по числу фильтров) столбиков светодиодов, по одному для каждой полосы частот сигнала. При этом в хороших моделях, типа классического DN60 от Klark-Teknik, число светодиодов в столбике достаточно велико - порядка 15 шт., что позволяет использовать эти анализаторы не только для настройки АЧХ, но и для многих других, более серьезных целей. Впрочем, существуют и совсем дешевенькие модели многих других фирм, всего с тремя светодиодами в каждом столбике. (Автор просит не рассматривать упоминание Klark-Teknik как рекламу!!! Ведь рекламировать Klark-Teknik - это все равно, что рекламировать, скажем, Роллс-Ройс. Не нуждаются они оба в ней! J )</div> <div> <br /> </div> <div><b>Однако, мы отвлеклись...</b></div> <div>При подключении к анализатору специального измерительного микрофона с максимально линейной АЧХ (и только такого - обычные, применяемые в музыке микрофоны - абсолютно для этого непригодны!), на экране будет достаточно точно отображаться спектр звука. Если на нем видны явно “торчащие”, как гвоздь в ботинке, пики (или провалы) в характеристике - то, перемещая соответствующие этим частотам регуляторы на эквалайзере, можно в определенных пределах скорректировать АЧХ тракта звукоусиления.</div> <div> <br /> </div> <div>Однако - именно, и только “в определенных пределах”. Почему? Да потому, что нам же неизвестен спектр самого воспроизводимого сигнала, т.е. нет эталона для сравнения!.. </div> <div> <br /> </div> <div>Вот именно таким эталоном и служит входящий в состав большинства хороших анализаторов <b>генератор так называемого “розового” шума</b>. Почему именно “розового”, а не, скажем, белого или какого-нибудь там “серо-буро-малинового”? Да просто спектр именно такого шума - ближе к тем сигналам, музыкальным, с которыми мы имеем дело на практике. А сам термин &quot;розовый&quot; (впрочем, как и &quot;белый&quot;) - пришел из оптики. Если белый цвет (свет) профильтровать через фильтр, имеющий АЧХ со спадом к коротковолновым, т.е. ВЧ-составляющим, с крутизной среза 3дб/октава - то он станет розовым.</div> <div> <br /> </div> <div>Белый шум - это шум одинаковый по амплитуде на всех частотах звукового спектра. Т.е. если исследовать спектр такого шума узкополосным вольтметром с постоянной абсолютной шириной полосы пропускания (скажем, в 1Гц) - то его показания также будут одинаковыми, независимо от того, на какой частоте производятся измерения - на 10 Гц, или - на 100 МГц.</div> <div> <br /> </div> <div>Розовый же шум - имеет равную энергию в постоянном интервале частот (относительном). Т.е. если исследовать спектр такого шума узкополосным вольтметром с постоянной относительной шириной полосы пропускания (скажем, в 1 октаву) - то его показания также будут одинаковыми, независимо от того, на какой средней частоте полосы производятся измерения - на 14 Гц (полоса измеряемых частот - от 10 до 20 Гц), или - на 140 МГц (полоса измеряемых частот - от 100 МГц до 200 Мгц).</div> <div> <br /> </div> <div>Так как применяемые в анализаторах селективные фильтры также являются фильтрами с постоянной, в одну третью часть октавы, относительной шириной полосы пропускания, то при подаче на вход анализатора спектра сигнала розового шума - на экране дисплея будет видна <b>ровная горизонтальная линия</b>, что соответствует линейной АЧХ.</div> <div> <br /> </div> <div>Таким образом, если вы подключите ко входу вашего РА-тракта сигнал с генератора розового шума, то на экране анализатора будет видна реальная результирующая АЧХ всего тракта, со всеми пиками и провалами. И вы сможете быстро, и без особых трудностей настроить свою аппаратуру.</div> <div> <br /> </div> <div>Конечно, “быстро, и без особых трудностей” - это в случае хорошего анализатора, с нормальным экраном. Если же вы вынуждены обходиться упрощенным анализатором, всего с тремя светодиодами индикации в каждой полосе, то процедура настройки станет довольно утомительной. Ведь эти три светодиода, по сути, отражают только отклонение АЧХ от линейной, на уровне “больше-меньше”.</div> <div> <br /> </div> <div>Поэтому настройка идет методом последовательных приближений, при постепенном переключении разрешающей способности шкалы на более точные значения - скажем, вначале 6 дБ на светодиод, потом - 3 дБ, потом - 1дБ. Довольно долго, не очень удобно, а главное - этот тип анализатора вы не сможете применить ни для чего другого, кроме как для настройки АЧХ. Подумайте, выбирая себе анализатор - <b>стоит ли на нем экономить?</b></div> <div> <br /> </div> <div>Кстати - уж коль речь зашла о DN60, то необходимо упомянуть о еще одной из множества его возможностей. Отдельно к анализатору вы можете приобрести еще и приставку RT60, служащую для анализа характера реверберационного процесса в помещении. С ее помощью вы можете измерить время реверберации в помещении, в том числе - для отдельных частот, и даже в графическом виде увидеть кривую затухания процесса реверберации, причем - по отдельности для каждой из полос спектра.</div> <div> <br /> </div> <div>Это - очень интересная возможность, однако - вы же не можете переделать сам зал, как бы вам этого ни хотелось! Поэтому об этой функции, служащей в основном для целей архитектурной акустики, здесь упоминаем совсем вкратце, опять же - просто справедливости ради.</div> <div> <br /> </div> <div>Говоря об акустических измерениях, необходимо упомянуть еще об одном приборе, так называемом “фазовом тестере”. (Этот прибор выпускается многими фирмами и под разными названиями, однако приведенное выше - наиболее распространенное на практике.) Он служит <b>для проверки правильности фазирования акустических агрегатов.</b> Наиболее часто этот тестер изготовляется в виде двух отдельных небольших блоков, один из которых служит генератором специального сигнала, а второй - собственно индикатором фазирования.</div> <div> <br /> </div> <div>Генератор создает серию широкополосных импульсных сигналов особой формы, которая мало изменяется при прохождении частотно-разделительных цепей в кроссоверах, и его сигнал подается на вход усилителя или же микшерного пульта. (Естественно, что во втором случае - все имеющиеся в тракте эквалайзеры желательно отключить, переведя их в режим байпаса.)</div> <div> <br /> </div> <div>Индикатор же, со встроенным в него микрофоном - поочередно подносится ко всем звукоизлучающим элементам вашей акустической системы. По загоранию расположенных на нем светодиодов, чаще всего имеющих маркировку “+Phase” и “-Phase”, можно достаточно уверенно судить <b>о правильности фазировки ваших громкоговорителей.</b></div> <div> <br /> </div> <div>Следует только помнить, что часто - особенно в сложных, многополосных АС - для получения качественного звука головки громкоговорителей, работающие в различных полосах, могут быть включены в противофазе относительно головок, работающих в других полосах, и поэтому имеет реальный смысл сравнивать между собой только фазировку тех динамиков, которые работают в идентичных полосах звукового сигнала.</div> <div> <br /> </div> <div>Вот, в первом приближении, то основное, что можно сказать здесь о чисто акустических измерениях. Об измерении параметров самих громкоговорителей в этой статье речь не идет, это - тема для совсем другого рассказа...</div>

2016-07-03

Топ Звук
Россия
Московская область
Москва
ул. Ботаническая, дом 3
8 (905) 506-3-506
5
5
1
5
1
Звукорежиссура и измерения звука

Звукорежиссура и измерения звука

Звукорежиссура и измерения звука

<div>Наверное, многим этот заголовок может показаться кощунственным. В самом деле, так много говорится о “магии музыки”, о “волшебстве звука”, и вдруг - какие-то там измерения! Да как можно, “это ж святотатство!” - скажете вы. Ан, нет!</div> <div> <br /> </div> <div>Хотя, конечно, если говорить о музыке, как о нотах на листе бумаги - то безусловно, там еще никому и ничего измерить не удавалось. Да, пожалуй, и в голову не приходило - ну, только если количество нот сосчитать... Однако воспринимать партитуру уже как именно музыку - способны очень и очень немногие, а большинство нас способно воспринимать музыку исключительно в виде звуков, и это - не говоря уж о том, что и далеко не все музыканты ноты знают, вспомним хотя бы П. Маккартни!</div> <div> <br /> </div> <div>В том то и дело, что речь идет именно о звуке. А он, как и всякое физическое, материальное явление - <b>вполне может быть измерен.</b> В самом деле, ведь звук - это колебания частиц воздуха, а они прекрасно поддаются объективным измерениям. Можно измерить амплитуду этих колебаний, их скорость, частоту, исследовать спектр... Аналогично - и в случае звука, преобразованного в электрическую форму, записанного или передаваемого по различного рода электронным трактам передачи сигналов. Только во втором случае мы можем исследовать не только параметры самого сигнала, но и параметры трактов его передачи.</div> <div> <br /> </div> <div>Так как звук может быть представлен в двух различных ипостасях - в своем “исходном” виде, как волновые колебания в воздухе (или иной физической среде), или же как его электрический “слепок” - то, очевидно, что и измерения в этих двух случаях могут быть существенно различными.</div> <div> <br /> </div> <div>Чтобы не запутаться, давайте начнем разговор об измерениях в звукотехнике “ab ovo”, или, попросту говоря, с измерений параметров исходного вида звука - как воздушных колебаний.</div> <div> <br /> </div> <div><b>Акустические измерения</b></div> <div>Итак - что же мы можем здесь измерить? Очевидно, самое простое, что прежде всего приходит в голову - это уровень звука, его громкость. Однако - это не совсем так просто, как кажется на первый взгляд. Дело здесь, во-первых, в том, что звуковое давление (как, впрочем, и давление вообще) измеряется в особых, “физических” единицах.</div> <div> <br /> </div> <div>Таковыми являются, в частности, атмосфера, или более распространенная в последнее время в системе СИ единица “Паскаль” (Па). Один паскаль соответствует давлению силой в 1 Ньютон (около 100 грамм) на площадь в 1 кв. метр. Однако - думается, никто и никогда и слыхом не слыхивал о том, чтобы громкость где-либо измерялась в этих величинах...</div> <div> <br /> </div> <div>Н-да, незадача! В чем же тут дело? А все очень просто - очевидно, что, раз в этих единицах не измеряется, то, значит, это попросту неудобно! И действительно, все привычные нам измерения осуществляются в децибелах. Каким же образом понятные, чисто физические величины, которые можно “пощупать руками” превращаются, как по волшебству, в какие-то там абстрактные децибелы?</div> <div> <br /> </div> <div><b>Давайте вспомним вкратце, что такое децибел</b></div> <div>Децибел - прежде всего, величина относительная, а не абсолютная, т.е. измеряющая отношение каких-либо величин. Соответственно - для того, чтобы выразить результат измерений в децибелах (дБ), надо сначала договориться о том, что будет использоваться в качестве опорной величины.</div> <div> <br /> </div> <div>Для измерений уровней звука за опорный уровень принята величина звукового давления в 2х10-5 Па. Почему именно эта? Потому, что эта величина соответствует тому минимальному уровню звука (с частотой 1000 Гц), который еще воспринимается человеческим ухом (менее громкие звуки мы попросту не слышим). Именно эта величина и считается порогом слышимости.</div> <div> <br /> </div> <div>Для того, чтобы узнать - каков будет уровень звука в дБ, надо измерить его “физическую” величину в Па, и затем вычислить искомое значение по формуле:</div> <div>N=20lg(PN/P0), где PN - измеренный уровень звукового давления,</div> <div>P0 =2х10-5 Па - опорный уровень,</div> <div>N - искомая величина в децибелах.</div> <div> <br /> </div> <div>Таким образом мы получим величину уровня звукового давления в децибелах. В литературе эта величина носит название SPL, по первым буквам английского словосочетания <b>“Sound Pressure Level”</b>, или, в отечественной литературе - УЗД.</div> <div> <br /> </div> <div>Именно эта величина измеряется особыми приборами, специально предназначенными для измерений громкости звука - шумомерами. Однако эта величина далеко не всегда отражает реально воспринимаемую нами громкость звучания. Почему? Вот, теперь - мы подошли к “во-вторых”.</div> <div>В самом деле, известно, что воспринимаемая ухом громкость зависит также и от частоты сигнала, а сама эта зависимость, будучи существенно нелинейной, в свою очередь зависит от уровня сигнала... И что делать?</div> <div> <br /> </div> <div>К сожалению, если по “большому счету” - здесь тупик. Не существует во всем мире ни одного шумомера, способного на реальном, сложном, многочастотном звуке измерять субъективно воспринимаемую нами громкость. Однако, для некоторых частных случаев <b>был предложен паллиативный выход.</b></div> <div> <br /> </div> <div>В конструкцию шумомеров были введены особые, так называемые “псофометрические” фильтры, чья АЧХ примерно соответствует АЧХ слуха для некоторых, вполне определенных уровней звука. Если измеренный в широкой полосе уровень звукового давления примерно соответствует уровню одной из этих кривых, то, включив требуемый фильтр в цепь измеряющего прибора, мы внесем в измерения поправку на нелинейность АЧХ слуха, и результат измерений будет более точно соответствовать субъективно воспринимаемой нами громкости.</div> <div> <br /> </div> <div>Таких псофометрических кривых АЧХ существует несколько, для разных уровней звукового давления и даже для разных исходных звучаний, однако в нашей области звукотехники реально применяется только одна разновидность, а именно - так называемая “кривая А”. Эта кривая примерно соответствует АЧХ слуха при громкости в 45 фон.</div> <div> <br /> </div> <div>(Напомним, кстати, что громкость, как субъективная величина - измеряется не в децибелах, а в особых единицах, называемых “фон”. Уровень громкости в фонах соответствует уровню звукового давления эталонного звука с частотой в 1000 Гц, вызывающего у человека ощущение равной громкости по сравнению с исследуемым звучанием.)</div> <div> <br /> </div> <div>Результат измерения, полученный с помощью псофометрического фильтра, часто называют “взвешенным”, при этом после обозначения децибела добавляется буква, соответствующая виду использованной кривой фильтра.<b> В нашем случае это буква “А” - дБА.</b></div> <div><b> <br /> </b></div> <div><img src="/upload/medialibrary/231/izmerenie.jpg" title="izmerenie.jpg" border="0" alt="izmerenie.jpg" width="512" height="512" /><b> <br /> </b></div> <div> <br /> </div> <div>Следует, однако, помнить, что применять именно этот фильтр - можно только для измерения слабых сигналов. В противном случае - можно такого намерять!.. А вот для слабых - в самый раз. Действительно, если предположить, что максимальный уровень звука соответствует 130дБ, т.е. болевому порогу, то сигнал с уровнем 45 дБ будет лежать ниже предыдущего на 85 дБ, что примерно соответствует соотношению сигнал/шум для современных электроакустических трактов звукопередачи.</div> <div> <br /> </div> <div>Таким образом, применение дБА для измерения уровней шумов и помех в тракте - вполне оправданно и целесообразно. (Далее мы еще к этому вернемся.) То есть, если вы хотите измерить, скажем, уровень шумов вашего РА-комплекса в паузе - то смело применяйте дБА, результат “будет соответствовать”. Если же вас интересует громкость звучания самого концерта - то, учитывая особенности современной музыки, исполняемой на весьма высоких громкостях, можете смело выключать из цепи измерений все фильтры. Результаты, измеренные в широкой полосе, <b>будут иметь весьма незначительную погрешность.</b></div> <div> <br /> </div> <div>Еще один “звукомерный” измерительный прибор, получивший в практике звукоусиления, пожалуй, наиболее широкое распространение - это анализатор спектра. Именно он применяется для настройки АЧХ трактов звукоусиления, и чаще всего - совместно с генератором так называемого “розового шума”. (Справедливости ради заметим, что практически все современные шумомеры тоже имеют в своем составе треть-октавные фильтры, однако они могут включаться в работу только поочередно, и в силу этого неудобны для указанной цели.)</div> <div> <br /> </div> <div>Как правило, применяемые в звукотехнике анализаторы спектра также используют треть-октавные фильтры, числом от 27 (в дешевых моделях) до 31 - в серьезных, профессиональных устройствах. Причем частоты настройки этих фильтров идентичны тем частотам, на которых осуществляется регулирование в графических эквалайзерах.</div> <div> <br /> </div> <div>Наиболее удобные в работе анализаторы спектра имеют светодиодный дисплей-индикатор, состоящий из нескольких (по числу фильтров) столбиков светодиодов, по одному для каждой полосы частот сигнала. При этом в хороших моделях, типа классического DN60 от Klark-Teknik, число светодиодов в столбике достаточно велико - порядка 15 шт., что позволяет использовать эти анализаторы не только для настройки АЧХ, но и для многих других, более серьезных целей. Впрочем, существуют и совсем дешевенькие модели многих других фирм, всего с тремя светодиодами в каждом столбике. (Автор просит не рассматривать упоминание Klark-Teknik как рекламу!!! Ведь рекламировать Klark-Teknik - это все равно, что рекламировать, скажем, Роллс-Ройс. Не нуждаются они оба в ней! J )</div> <div> <br /> </div> <div><b>Однако, мы отвлеклись...</b></div> <div>При подключении к анализатору специального измерительного микрофона с максимально линейной АЧХ (и только такого - обычные, применяемые в музыке микрофоны - абсолютно для этого непригодны!), на экране будет достаточно точно отображаться спектр звука. Если на нем видны явно “торчащие”, как гвоздь в ботинке, пики (или провалы) в характеристике - то, перемещая соответствующие этим частотам регуляторы на эквалайзере, можно в определенных пределах скорректировать АЧХ тракта звукоусиления.</div> <div> <br /> </div> <div>Однако - именно, и только “в определенных пределах”. Почему? Да потому, что нам же неизвестен спектр самого воспроизводимого сигнала, т.е. нет эталона для сравнения!.. </div> <div> <br /> </div> <div>Вот именно таким эталоном и служит входящий в состав большинства хороших анализаторов <b>генератор так называемого “розового” шума</b>. Почему именно “розового”, а не, скажем, белого или какого-нибудь там “серо-буро-малинового”? Да просто спектр именно такого шума - ближе к тем сигналам, музыкальным, с которыми мы имеем дело на практике. А сам термин &quot;розовый&quot; (впрочем, как и &quot;белый&quot;) - пришел из оптики. Если белый цвет (свет) профильтровать через фильтр, имеющий АЧХ со спадом к коротковолновым, т.е. ВЧ-составляющим, с крутизной среза 3дб/октава - то он станет розовым.</div> <div> <br /> </div> <div>Белый шум - это шум одинаковый по амплитуде на всех частотах звукового спектра. Т.е. если исследовать спектр такого шума узкополосным вольтметром с постоянной абсолютной шириной полосы пропускания (скажем, в 1Гц) - то его показания также будут одинаковыми, независимо от того, на какой частоте производятся измерения - на 10 Гц, или - на 100 МГц.</div> <div> <br /> </div> <div>Розовый же шум - имеет равную энергию в постоянном интервале частот (относительном). Т.е. если исследовать спектр такого шума узкополосным вольтметром с постоянной относительной шириной полосы пропускания (скажем, в 1 октаву) - то его показания также будут одинаковыми, независимо от того, на какой средней частоте полосы производятся измерения - на 14 Гц (полоса измеряемых частот - от 10 до 20 Гц), или - на 140 МГц (полоса измеряемых частот - от 100 МГц до 200 Мгц).</div> <div> <br /> </div> <div>Так как применяемые в анализаторах селективные фильтры также являются фильтрами с постоянной, в одну третью часть октавы, относительной шириной полосы пропускания, то при подаче на вход анализатора спектра сигнала розового шума - на экране дисплея будет видна <b>ровная горизонтальная линия</b>, что соответствует линейной АЧХ.</div> <div> <br /> </div> <div>Таким образом, если вы подключите ко входу вашего РА-тракта сигнал с генератора розового шума, то на экране анализатора будет видна реальная результирующая АЧХ всего тракта, со всеми пиками и провалами. И вы сможете быстро, и без особых трудностей настроить свою аппаратуру.</div> <div> <br /> </div> <div>Конечно, “быстро, и без особых трудностей” - это в случае хорошего анализатора, с нормальным экраном. Если же вы вынуждены обходиться упрощенным анализатором, всего с тремя светодиодами индикации в каждой полосе, то процедура настройки станет довольно утомительной. Ведь эти три светодиода, по сути, отражают только отклонение АЧХ от линейной, на уровне “больше-меньше”.</div> <div> <br /> </div> <div>Поэтому настройка идет методом последовательных приближений, при постепенном переключении разрешающей способности шкалы на более точные значения - скажем, вначале 6 дБ на светодиод, потом - 3 дБ, потом - 1дБ. Довольно долго, не очень удобно, а главное - этот тип анализатора вы не сможете применить ни для чего другого, кроме как для настройки АЧХ. Подумайте, выбирая себе анализатор - <b>стоит ли на нем экономить?</b></div> <div> <br /> </div> <div>Кстати - уж коль речь зашла о DN60, то необходимо упомянуть о еще одной из множества его возможностей. Отдельно к анализатору вы можете приобрести еще и приставку RT60, служащую для анализа характера реверберационного процесса в помещении. С ее помощью вы можете измерить время реверберации в помещении, в том числе - для отдельных частот, и даже в графическом виде увидеть кривую затухания процесса реверберации, причем - по отдельности для каждой из полос спектра.</div> <div> <br /> </div> <div>Это - очень интересная возможность, однако - вы же не можете переделать сам зал, как бы вам этого ни хотелось! Поэтому об этой функции, служащей в основном для целей архитектурной акустики, здесь упоминаем совсем вкратце, опять же - просто справедливости ради.</div> <div> <br /> </div> <div>Говоря об акустических измерениях, необходимо упомянуть еще об одном приборе, так называемом “фазовом тестере”. (Этот прибор выпускается многими фирмами и под разными названиями, однако приведенное выше - наиболее распространенное на практике.) Он служит <b>для проверки правильности фазирования акустических агрегатов.</b> Наиболее часто этот тестер изготовляется в виде двух отдельных небольших блоков, один из которых служит генератором специального сигнала, а второй - собственно индикатором фазирования.</div> <div> <br /> </div> <div>Генератор создает серию широкополосных импульсных сигналов особой формы, которая мало изменяется при прохождении частотно-разделительных цепей в кроссоверах, и его сигнал подается на вход усилителя или же микшерного пульта. (Естественно, что во втором случае - все имеющиеся в тракте эквалайзеры желательно отключить, переведя их в режим байпаса.)</div> <div> <br /> </div> <div>Индикатор же, со встроенным в него микрофоном - поочередно подносится ко всем звукоизлучающим элементам вашей акустической системы. По загоранию расположенных на нем светодиодов, чаще всего имеющих маркировку “+Phase” и “-Phase”, можно достаточно уверенно судить <b>о правильности фазировки ваших громкоговорителей.</b></div> <div> <br /> </div> <div>Следует только помнить, что часто - особенно в сложных, многополосных АС - для получения качественного звука головки громкоговорителей, работающие в различных полосах, могут быть включены в противофазе относительно головок, работающих в других полосах, и поэтому имеет реальный смысл сравнивать между собой только фазировку тех динамиков, которые работают в идентичных полосах звукового сигнала.</div> <div> <br /> </div> <div>Вот, в первом приближении, то основное, что можно сказать здесь о чисто акустических измерениях. Об измерении параметров самих громкоговорителей в этой статье речь не идет, это - тема для совсем другого рассказа...</div>

Загрузка комментариев...